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Abstract. We discuss the difficulties encountered when the Heisenberg-Kolmogoroff model for turbulence 
is applied to the large-scale turbulence in: (A) molecular clouds (specifically the velocity vs size relationship) 
and (B) stars (specifically, the estimate of convective fluxes). 

A new model for large-scale turbulence is, therefore, needed. 

1. Introduction 

The main difficulty encountered in constructing a model of turbulence lies in the 
well-known 'closure problem', whereby the equation for (v n ) (v is the fluctuating or 
turbulent velocity), depends on terms of the form ( v n + 1 ) which in turn satisfy an 
equation involving ( v" + 2 ) ,  giving rise to an infinite chain of connected equations. For 
(v 2 ) ,  one has the well-known energy equation (cf. Batchelor, 1970) 

k 
p l  

{v + vt(k)} ~ 2k2F(k)dk. (1) g(k) 
1 1  

ko 

The energy e(k) (per unit mass and time) fed into the system in the interval k 0 - k is 
partly dissipated by viscous forces ,-~ v(Vv) 2 ~ vk2v 2, and partly transferred to higher k 
by the nonlinear terms ~ v 3. Following the original suggestion by Heisenberg, the 
transfer process is written as the product of two terms. The first term represents the loss 
of energy by the eddies in the interval ko to k while the second term, represented by the 
action of a turbulent viscosity vt(k), describes the redeposition of the same energy to the 
eddies in the remaining interval from k to 0% 

vt(k ) = ~ v} k) dk/k, (2) 

k 

where v} k) represents the eddy viscosity exerted by turbulence on a band ofwavenumbers 
centered around k. Clearly, the 'closure problem' is equivalent to prescribing the function 

vff ~ . 
In (1), F(k) is the energy spectral function, i.e., �89 dk is the energy contained in 
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the wavenumber interval between k and k + dk, 

v2(k) = f F(k) dk . 
k 

Integrating (1) over all k we obtain 

~ 2v i k2F(k) dk, 
ko 

= e(oo) = constant, 

(3) 

(4) 

(7) 

and 

v2(k) = S 4 dk/k, 
k 

which expresses the global energy conservation, i.e., the nonlinear interactions transfer 
energy without dissipation. 

A theory of turbulence aims at predicting the function F(k), i.e., how turbulent energy 
is distributed among eddies of different sizes. It is useful to visualize a turbulent medium 
as a conglomerate of eddies of sizes ranging from large eddies (~  dimension of the 
system itself), to eddies small enough (large k's) for molecular forces to operate. The 
dynamics of the large eddies is critically dependent on the nature of the energy feeding 
mechanism, i.e., on the structure of the function e(k), which may depend on magnetic 
fields B, rotation fl, etc. In general, a = e(k, B, fl . . . .  ). The large eddies receive the 
stirring energy and transfer it, via the nonlinear interactions and without dissipation, to 
all the eddies of smaller sizes. Finally, there are very small eddies whose dynamics 
depends strongly on the nature of the kinematic viscosity. 

Let us now consider Equation (1) for which we need two ingredients: vt(k ) and e(k). 
The first successful model of turbulence was worked out independently by Heisenberg 
and Kolmogoroff in the late forties (Batchelor, 1970). HK selected a special group of 
eddies sufficiently removed from the energy source to be independent of the specific 
nature of the stirring mechanism, but at the same time not too close to the high k region 
where dissipative forces are most effective. The first assumption implies that in the HK 
region, the stirring energy has suffered many cascading processes, thereby losing 
memory of its specific nature. The only remaining feature is, therefore, the total energy 

- -  i . e . ~  

~(k) = e = constant (5) 

independent of k. 
Let us now analyze vt(k ). Since the HK eddies are at an intermediate distance from 

the two regions (low and high k) where forcing occurs, they can be considered 'freely' 
evolving. This means that their mean free path 2 k can be identified with their size 
Ik ~ k -  1. Since, in general, 

v} k) ~ 2kv k (6) 
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it follows that 

v?~ = ~k l ~  ' (8) 

where ,? is a numerical constant. Substituting Equations (5), (8), and (2) in (1), we obtain 
for F(k )  the well-known result (for v ~ 0) 

F(K) ~ e 2/3 k -  5/3, (9) 

known as the Kolmogoroff spectrum. Inserting (9) in (3), we are led to a velocity-size 
relation of the form 

v(l) ~ l ~/3 . (10) 

The Kolmogoroff spectrum has been repeatedly confirmed by experiments on medium 
to small size turbulence (Grant et al., 1962). 

2. Large-Scale Turbulence 

Having described the physical assumptions underlying the only successful model of 
turbulence presently available, the question naturally arises: can the HK model be 
applied to describe the turbulence encountered in most astrophysical and geophysical 
phenomena, namely large-scale turbulence (LST)? Stated differently, how must the two 
HK assumptions 

8(k) --- constant, ; dk v,(k) = 
k 

be modified in order to describe LST? 

(ll) 

The first assumption in (11) is the easiest one to tailor to the LST region. To do this, 
consider that Equation (1) represents the balance between four processes: (1) the energy 
gain from the source (e.g., in the case of thermally driven convection this would be the 
contribution from the buoyancy forces), (2) the energy losses due to molecular viscosity 
v, (3) the energy losses due to heat conduction X, and finally (4) the energy losses (or 
gains) due to the transfer of energy among different wavenumbers k. 

Of the four, the first three can be accommodated by the linear theory, their net effect 
being represented by the growth rate n~(k) 

n,(k) = n~(k, v, Z). (12) 

The fourth process, which cannot be accommodated within the linear theory is written 
as a two-step process, as explained earlier. With this, Equation (1) can be generalized 
to the form 

k k 

2 f e(k)ns(k) dk = f  2e(k) (13  
go ko 
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where the viscosity term in (1) is now folded into the growth rate G(k) and where the 
factor of 2 in the left-hand side of (13) arises because the energy is a quadratic function 
of the amplitude. 

Next, consider the eddy viscosity vt(k ). It is the purpose of this paper to show that 
the adoption of the Heisenberg-Kolmogoroff closure (11) for the L ST region (as in the 
work of Ledoux et al., 1961; and Yamaguchi, 1963) leads to unacceptable results and 
that a new closure is, therefore, needed. 

3. M o l e c u l a r  Clouds  

In the last few years, it has been demonstrated (Larson, 1981; Leung et al., 1982; Fleck, 
1983; Myers, 1983; Scalo, 1984; Dame et al., 1984; Henriksen and Turner, 1984)that 
molecular clouds exhibit a turbulent behavior and that their velocity vs size relation is 
of the form 

{ ly/2 
v(1)=Vol~-!  , Vo-~lkms -1 ,  / o~ - lpc .  (14) 

\to~ 

It will be shown that the use of (14) in (13), together with the vt(k ) given by (11) implies 
a growth rate ns(k ) that does not correspond to any physical process known or suspected 
to operate in molecular clouds. Conversely, it will also be shown that the use of a 
physically acceptable G(k) in (13) together with vt(k ) given by (11) leads to a velocity 
vs size relation that does not reproduce the well-established relation (14). 

To show the first point, substitute (14) into (3). The resulting F(k) is then 

F(k) ~ k-  2. (15) 

Taking the derivative of (13) and using (15), the resulting G(k) has the form (with k in 
units of ko) 

G(k) ~ k-  ,/2 (1 - k/3).  (16) 

A plot of this function is shown in Figure 1. Inspection of the behavior of the growth 
rates for the instabilities believed to operate in molecular clouds (see Elmegreen, 1982, 
for an extended analysis) shows that none of them resembles (16). 

As an example of a possible instability operating in molecular clouds, consider the 
Rayleigh-Taylor (RT) instability for two fluids of densities Pl and P2. The general form 
of G(k), including effects due to kinematic viscosity, has been worked out in detail by 
Chandrasekhar (1961), and the function G(k) can be found in his Figures 106 and 107. 
The behavior is very different from that of Figure 1. In the case of an RT instability with 
a superimposed magnetic field B parallel to g, the growth rate G(k) is given by 
Equation (209), Chapter X of Chandrasekhar (1961). In the limits k ~ 0 and k -~ ~ ,  the 
behaviour is given by 

k ~ 0 G(k) ~ k 1/2 
' ' (17)  

k-~ ~ , G(k) ~ constant, 
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Fig. 1. Plot of growth rate n~ vs wavenumber k (arbitrary units). The curves labeled R-T are for the 
Rayleigh-Taylor instability with magnetic field B parallel to the gravitational acceleration g and for zero 

magnetic field. The boldface curve is the result of using velocity v( l )  ~ l 1/2 in the HK theory. 
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Fig. 2. Plot of convective flux q5 vs S~ = eR~/. The boldface curve is the mixing length result calibrated 
using stellar models by Gough and Weiss (1976). The curves labeled LSS and Y are the results of Ledoux 
et  al .  (1961) and Yamaguchi (1963), respectively, based on the HK theory. The HK results are matched to 
the mixing length results in the low-flux limit. Note that the HK results are roughly two orders of magnitude 

too large in the large-flux limit. 
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again, quite different from that of Figure 2. Finally, in the case of an RT instability with 
a magnetic field B perpendicular to g, the form of ns (k  ) is given by (Chandrasekhar, 
1961 ; Equation (234), Chapter X; A is a constant) 

n , ( k )  ~ k 1/2 (1 - A k )  1/2 , (18) 

which again bears no resemblance to Figure 1. 
Let us now analyze the second aspect of the HK closure, i.e., suppose a physically 

acceptable ns(k)  is assumed. From the previous cases, it is clear that a constant growth 
rate can represent physically interesting cases (this is also true of the Parker (1967) 
instability when the physical parameters are chosen to correspond to the case of 
molecular clouds) (see Canuto and Battaglia, 1985). Substituting a constant n s in 
Equation (13), one can solve for F(k) .  The solution cannot be presented in closed 
analytical form, but the general behavior is of the form 

F ( k )  ~ k - ~  , (19) 

with u - 1 up to k ,~ 12ko; azfter that ~ -~ ~. In the first region, the result obtained from 
(3) is 

v(1) ~ On l )  '/2 , (20) 

while in the second region 

v(l)  ~ l '/3 . (21) 

In the first interval, v(1) given by (20) is almost constant, while in the second interval 
v(l)  grows with l only as/0.33, while the data require a faster growth such as 10.50 (cf. 
Turner, 1984). 

4. Convective Fluxes 

In this section, it will be shown that HK closure gives unacceptable results for convective 
turbulence fluxes. Since a theory of turbulent convection does not yet exist, the stellar 
model calculations, where an expression for the (turbulent) convective fluxes is required, 
have traditionally adopted a formula suggested by the Mixing Length Model (Gough, 
1978; Cox and Giuli, 1968) which predicts (in units of the conductive flux) 

S ~ I :  ( ~ = A S  2 ,  A = 8.75x 10 -5 , 
(22) 

S >> 1: ~ = B S 1 / 2 ,  B = 0 . 1 7 7 ,  

where 

S = [J~gz - 2 l 4 ' (23) 

In Equation (23) l is the mixing length; fi, the temperature gradient excess over the 
adiabatic gradient; g, the local gravity; ~, the thermometric conductivity and ~, the 
thermal expansion coefficient. Using stellar models, Gough and Weiss (1976) calibrated 
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the expressions (22) using as a calibrating parameter ~, 

l =  ctH, (24) 

where H is the pressure scale-height. Equations (22) were, therefore, expressed as 

S ~ I :  O = A H S  2 ,  

S>> 1: 09 = B ~ S ~ 2 "  (25) 

For a solar metallicity of Z = 0.02, the value of ~ was found to be 1.1 thus yielding 

A~r = 1.84 • 10  - 4  , B H = 0.214. (26) 

Now consider the prediction of Equation (13). In the case of thermally-driven 
convection, the form of n, (k)  is well-known (k = koq) 

n , (k) /n  o = ~ + 22q 4 - 2q 2 (27) 

(Ledoux e taL ,  1961; Yamaguchi, 1963; Chandrasekhar, 1961) where for a<{ 1, 
2n ~ = z k 2 2 -  1, and 22 = 27za/sa; where S d = g~fld4z - 2  is the product of aR, where o- 
is the Prandtl number and R is the Rayleigh number. 

In the limits of interest here, Equation (13) was solved by Ledoux et al. (1960) for 
S ~ 1 and by Yamaguchi (1963) for S > 1. Their results for the convective fluxes are 

1 
S ~ I :  O -  S 2 , 

16~zlOT2 (28) 

S > I '  09=--3"2 S,~/2 
4o/2 

where d entering the theory through the growth rate, is the depth of the convective region. 
Writing d in terms of H, 

d = a l l ,  (29) 

the theoretical predictions can be expressed in a way directly comparable to (25) - i.e., 

a8 
S~ l :  0 9 = - - s , ~ ,  

16rC103)2 (30) 

3.2/52 
S > 1 :  09- S f f  2 . 

472 

The value of the parameter y is about �89 (Ledoux et al., 1961). Suppose now that it 
is required that the theoretical formulae match expressions (25) in the low-flux region. 
In this case, b is found to be ~ = 1.53, which in turn yields for the large-flux limit 
equation (30), 

09 = 17Sf f  2 , (31) 
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a value 80 times larger than the calibrated value (25) and (26). The situation is illustrated 
in Figure 2. 

Suppose now that the theoretical prediction is matched in the high-flux limit. One 
finds b = 0.17, yielding a low-flux limit of 

�9 = 4.7 x 10-11 S,q, (32) 

which is seven orders of magnitude lower than the calibrated value (25)-(26). The 
situation is illustrated in Figure 3. 
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Fig. 3. Plot of convective flux ~ vs S H = a R  H .  As in Figure 2, the H K  results are matched to the mixing 
length results in the high-flux limit. Note that the H K  results are roughly seven orders of magnitude too 

small in the small-flux limit. 

Evidently, one has the option of not accepting the value of 7 suggested by Ledoux et al. 

(1960) and consider it a free parameter. In this case, one can match both the low- and 
the high-flux limit provided one accepts that 

= 3.2 and 7 = 6.3. (33) 

In this case, a value of 7 about twenty times larger than the standard value determined 
in laboratory turbulence would have to be justified. 

It is, therefore, believed that the previous determination is the correct one, and that 
the HK closure does indeed lead to unacceptable results. 
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5. Conclusions 

The Heisenberg-Kolmogoroff (HK) model of turbulence is often used to describe 
turbulent phenomena on all scales, though it is valid for a band of wavelengths in the 
turbulent spectrum that are typically much smaller than the size of the system. 

Evidence has been presented here that the HK model cannot describe phenomena 
at large scales in astrophysical systems. First, the results of the mixing length theory 
cannot be accommodated within the framework of the HK model without adopting an 
unreasonable coupling constant. 

Secondly, use of the observed velocity-size relationship in molecular clouds v ,,~ l 1/2 

in the HK model, gives rise to a growth rate that does not correspond to any known 
physical process believed to operate in molecular clouds. 

It is, therefore, concluded that a new model for large-scale turbulence is needed to 
describe these phenomena (for example, see Canuto and Goldman, 1985). 
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